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GLOBAL FREQUENCY DISTRIBUTION OF
EXOSPHERIC TEMPERATURE

Jack W. Slowey

INTRODUCTION

[t was desired to determine the distribution of exospheric temperature
as given by certain models of the earth's upper atmosphere. The required
distributions were to cover all conditions of solar and geomagnetic activity
as well as spatial location above the earth. They were to be employed to
facilitate the use of the models in general-perturbation orbit integration.
The models of interest were the 1971 Jacchia model (Jacchia, 1971) and the
model given for heights above 120 km in the U.S. Standard Atmosphere Supple-
ments, 1966 (COESA, 1966). For convenience, these models will be referred
to as J71 and US66, respectively.

The problem was approached in three stages. In the first, the historical
record of solar activity over the past 12 solar cycles was used to establish
the effect of solar activity on the desired distributions. In the second, the
effect of the diurnal temperature variations as given by the models was imposed.
Finally, the distribution of geomagnetic disturbance was estimated, and its
effect on the exospheric temperatures, as given by the models, was taken into
account. These three stages of the investigation and the results from each
are described in the following sections.

SOLAR-ACTIVITY VARIATION
The earth's upper atmosphere undergoes a large variation in temperature

and density in the course of the 11-year cycle of solar activity. The range
of this variation is not. however, constant from one cycle to the next but




varies in accordance with the level of solar activity at maximum, a highly
variable quantity. Thus, it is necessary to take a large portion of the
historical record of solar activity into account in order to determine the
statistical effect on the distribution of atmospheric temperature.

The historical record of sunspot numbers goes back to 1749. However,
in most models of the thermosphere and exosphere, including those under con-
sideration here, the variations associated with solar activity are correlated
with the 10.7-cm radio flux from the sun. The record of the 10.7-cm solar
flux goes back only to 1947 and is inadequate for the present purpose. It is
necessary, therefore, to be able to relate the observed sunspot numbers to
the corresponding 10.7-cm flux for use in the atmospheric models. The rela-
g tion that was used was
f

10.7 = 9.4 +0.97 R+ 17.6 exp (-0.035 R) , (1)

where FIO 7 is the mean adjusted 10.7-cm solar flux and R is the mean Zurich
sunspot number. This is a very slightly modified version of an equation

previously developed by L. G. Jacchia and the author. It is reported (Euler,
Lundquist and Vaughan, 1978) to give a correlation coefficient of 0.98 with

a data base of ?]0.7 from 67 to 260, where the means of F10.7 and of R were
13-month running means of the monthly mean values (the 13-month running mean
is centered on the month in question and gives half weight to the months

6 months before and 6 months after that month).

The distribution of the nighttime minimum in the exospheric temperature
was obtained by sampling every third monthly value of the 13-month running

means of the sunspot number. Smoothing over 6-month intervals is usually
recommended in connection with the atmospheric models. The 13-month means
which are routinely used in solar activity prediction — were already available,

however, and it was clear that the slightly greater smoothing would have
very little effect on the resulting distribution. Equation (1) was used to |
obtain the mean 10.7-cm flux, which was then converted to temperature by




Table 1. Distribution of global minimum exospheric temperature as computed
from the J71 and US66 atmospheric models.

J71 Model

+

Temp. lnterval* (°K) N
0-+10 64

+ 30 -~ + 20 45
+ 20 - + 30 34
+ 30 - + 40 24
+ 40 - + 60 34
+ 60 - + 80 27
+ 80 - +100 39
+100 - +120 36
+120 - +140 32
+140 - +160 29
+160 - +180 22
+180 - +200 23
+200 - +230 &3
+230 - +260 19
+260 - +300 22
+300 - +350 23
+350 - +400 13
+400 - +450 8
+450 - +550 12
+550 - +650 3
+650 - +750 0

*Relative to the temrcorature corresponding to

N/N; (2) )

S O N = NP WS AL OO DD SN B O O
| O O w N B W= O W W= U O 0 W = & 0 &b oo
|

12,

US66 Model ,
NoONN() f(KTY)

120 % 3077 61 115 1.15 xT072
0.85 41 7.7 097
0.64 ¥ 6.0 0450
0.45 23 4.3 0.43
0.32 B 6.2 0.3
0.25 29 5.5 0.27
0.37 2 B0 0.3
0.34 B 5E 0.3
0.30 29 5.5 0.27
0.27 M A5 6.23
0.21 30 5.6 0.28
0.22 19 3.6 0.13
0.14 26 4.9 0.16
0.12 27 5.1 0.17
0.10 19 3.6 0.09
0.09 26 4.9 0.10
0.05 15 2.8 0.06
0.03 12 2.3 0.045
0.023 13 2.4 0.024
0.006 6 1.1 0.011
0.000 0.4  0.004 1

R=0(Fp.7 = 67). This

2 K for the US66 model.

R =
temperature is 596.1 K for the J77 model and 603.

+N is the number of data points in the interval, N
data points (= 532).

T is the total number of
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using the appropriate equation in the particular model. Sampling began with
the value for December 1847 and ended with that for September 1980, giving a

total of 532 data points. The 11 points at the end were taken from the

National Oceanic and Atmospheric Administration's predictions of July 1978,

The resulting distributions for the two models are tabulated in Table 1 and

are shown plotted for the J71 and US66 models in Figures la and 1b, respectively.
The relative frequency, f, is the fraction of the total per 1-degree temperature
interval. The model equation used to relate the nighttime minimum temperature
to the mean 10.7-cm flux is given on each of the figures. The mean values
resulting from these distributions are 726 K for the J71 model and 748 K for

the US66 model. The mean 10.7-cm flux corresponding to the mean exospheric
temperature is approximately 107 for both models.

DIURNAL VARIATION

The diurnal variation in exospheric temperature as given by either the
|
J71 or the US66 model can be written as |

T = TO(l + RD) (2)
where T is the exospheric temperature, TO is the nighttime minimum exosphere i
temperature, 1 + R is the (constant) ratio of the maximum to the minimum global

exospheric temperature, and D is the diurnal parameter. The diurnal parameter

varies between 0 and 1 and is given by

PO ] 5
D =sin" 0+ (cos" n - sin™ 0) cos" (%) J

with
1
0=5le+egl
)
n~2|¢> ¢Bl )
T:H+[’.+p5‘in(H+Y) g (3)




where ¢ is the latitude of the point in question, g is the latitude of the

maximum in exospheric temperature, and H is the hour angle of the sun. In
the case of the J71 model, Ip is set equal to the declination of the sun,
while in the US66 model, g = 0. Constants for the two models are

R= 0.5 5 me= 2.2 v = Bl s R E =3RS, p =62 |, y = 43
and

s e e A o e = R S e o e |~ y = 45°
for the J71 and US66 models, respectively.

A computer program was written to integrate numerically the area on the
globe between the point of minimum exospheric temperature and the exospheric
isotherm defined by a particular value of the diurnal parameter. Results
from this program are tabulated for both models in Table 2 and are plotted
in Figure 2a. Table 2 gives results for the two extreme cases of equinox and
solstice in the case of the J71 model. As can be seen, the differences
between the results for the two cases are quite small. Thus, the results for
the single case of equinox were taken to represent the distribution for any
time of the year in the subsequent computations with the J71 model.

The diurnal distribution of exospheric temperature is quite different in
the two atmospheric models as a result of the differences in the model constants.
This is evident from the isotherm plots included with the published models.

It can also be seen in Figure 2b, where the diurnal temperature distribution —
which depends on the slope of the diurnal area curve in Figure 2a — is plotted
for each of the two models for the case where the minimum exospheric temperatures
are equal to the mean values given above. In the J71 model, the frequency 1is
much larger near minimum temperature than it is at higher temperature because
the isotherms are much more widely spaced near minimum temperature than they

are for higher temperatures. In the US66 model, the variation in spacing is
much less, and the isotherms are actually closer together at minimum than they

are at maximum.




Table 2. Integrated global
diurnal temperature parameter, D, for the J71 and US66
atmospheric models (total area = 1).

D

0.00
0.05
.10
1S
.20
<9
.30
«35
.40
.45
.50
«95
.60
.65
.70
kD
.80
.85
.90
<95
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J71 Model

isotherm areas as a function of the

9o = 050 4 = 2325
.0000 0.0000
.1037 0.1014
.1787 0.1748
.2452 0.2398
.3063 0.2995
.3635 0.3551
L4174 0.4074
.4685 0.4576
.5158 0.5061
.5625 0.5533
.6055 0.5991
.6473 0.6437
.6883 0.6870
.7286 0.7290
.7685 0.7694
.8078 0.8090
.8469 0.8481
.8855 0.8866
.9239 0.9248
.9620 0.9626
.0000 1.0000

US66 Model
bg = 0°0

.0000
.0397
.0841
d k1817
791
.2287
.2794
.3310
. 3831
.4357
.4886
.5414
.5938
.6454
.6965
.7475
.7983
.8490
.8996
.9500
.0000

0 O O O O 0 0O O O OO0 0o o o0 o o o o o
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The global distribution of exospheric temperature was calculated for the
two models from the corresponding distribution of minimum temperature by
computing

£ (T))aT (A, - A.)
N Tgtlaitlahta » 4y
falTys To! ‘Z T, T, ’ (4)

0

where fG(T1’ T2) is the global relative frequency per degree in the interval

between T; and T,, fO(TO) is the relative frequency per degree of the minimum
temperature TO’ and A] and A2 are the global isotherm areas corresponding to

the two diurnal parameters computed from

The sum was taken with steps of 1° in TO and values of A were computed by
interpolation from Table 2.

The resulting distributions (Kp = 0) are given for both models in Table 3
and are plotted in Figure 3a for the J71 model and in Figure 3b for the US66
model. Mean values of the exospheric temperatures given by these distributions
are 817 and 855°K, respectively, for the J71 and US66 models.

GEOMAGNETIC VARIATION

To determine the effect of the geomagnetic variation on the distributions,
it was first necessary to obtain the distribution of geomagnetic disturbance.
The historical record of the geomagnetic index commences in 1932 and, hence,
encompasses the last 4 complete solar cycles (17-20). Only data beginning
rmidway through cycle 19 were readily available to the author, however. Data
from cycle 19 were excluded both because they represented only a partial cycle
and might be biased for that reason and because cycle 19 itself was extremely

11




Table 3.

Global distribution of exospheric temperature from the J71

and US66 atmospheric models for Kp

*
Temp. Interval (°K)

J71 Model

0.

US66 Model

N/NL (%)

0
+20
+40
+60
+80

+100
+120
+140
+160
+180
+200
+230
+260
+300
+350
+400
+450
+500
+550
+600
+700
+800
+900
+1000

+20
+40
+60
+80
+100
+120
+140
+160
+180
+200
+230
+260
+300
+350
+400
+450
+500
+550
+600
+700
+800
+900
+1000
+1100

+1100 - +1200

*
Relative to 596°1 K for the J71 model and 603°2 K for the US66 model.
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N/NT(m)

£k h

.141 < 107
.229
.247
.254
.274
.298
315
<328
335
.303
.241
205
.178
.141
.104
.075
.055
.041
.030
.016
.007
.003
.001
.000
0.
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Table 4. Distribution of the K_geomagnetic index over the most
recent solar cycle.

K ATg (°K) N £ = NNy 3r
0 0.0 180 .0448 0448
0+ 9.3 254 .0632 1080
1- 18.8 286 0712 1792
1 28.1 309 .0769 25611
1+ 37.4 315 .0784 .3345
2- 46.9 351 .0874 .4219
2 56.2 333 .0829 .5047
2+ 65.6 304 .0757 .5804
3- 75.2 316 .0786 6590
3 84.6 333 .0829 .7419
3+ 94.1 260 .0647 .8066
4- 103.9 207 0515 .8581
4 113.6 157 .0391 .8972
4+ 123.5 127 .0316 9288
5- 134.0 93 .0231 9520
5 144 .4 61 .0152 L9671
5+ 155.4 41 .0102 9774
6- 167.5 29 .0072 .9846
6 180.1 23 .0057 9903
6+ 194.1 10 .0025 9928
7- 210.4 9 .0022 9950
7 228.9 5 .0012 9963
7+ 251.0 3 .0007 9970
8- 279.0 4 .0010 9980
8 313.4 4 .0010 9990
8+ 357.6 2 .0005 .9995
9- 417.5 1 .0002 9998
9 495.1 1 .0002 1.0000
et st SR o e e B s

AT

G

= s + 0° K )
28 Kp 0°03 exp ( p)
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Table 5.

Global frequency distribution of exospheric temperature from the
J71 and US66 atmospheric models with the geomagnetic temperature

T ——

variation included.

0
+20
+40
+60
+80

+100
+120
+140
+160
+180
+200
+230
+260
+300
+350
+400
+450
+500
+550
+600
+700
+800
+900
+1000

*
Temp. Interval (°K)

+20
+40
+60
+80
+100
+120
+140
+160
+180
+200
+230
+260
+300
+350
+400
+450
+500
+550
+600
+700
+800
+900
+1000
+1100

+1100 - +1200

J71 Model US66 Model

|
}
'
|

"Relative to 596°1 K for the J71 model

17

WN(Z)  F(KTY) N(%) Fok™1)
0.2  0.010 x 1072 0.1 0.004 « 107°
0.8 0.040 0.4 0.020
1.6 0.082 0.9 0.047
2.8 0.127 1.6 0.081
3.4 0.171 2.4 0.121
4.2 0.211 3.3 0.163
4.9  0.243 4.0 0.202
5.4  0.268 4.8 0.238
5.8  0.288 5.4 0.269
6.0  0.301 5.8 0.289
9.1  0.302 8.8 0.293
8.5  0.282 8.3 0.278
9.8  0.244 9.8 0.245
9.8  0.19 10.2 0.204
7.6 0.152 8.3 0.166
5.8  0.116 5.6 0.132
4.3 0.085 5.1 0.102
3.2 0.063 3.9 0.078
2.3 0.086 3.0 0.059
2.8 0.028 3.7 0.037
1.3 0.013 2.0 0.020
0.6  0.006 1.0 0.010
0.2 0.002 0.5 0.005
0.1  0.001 0.2 0.002
0.0 0.000 0.1 0.

|
|
)

and 60372 K for the US66 model.
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unusual. On the other hand, the data from cycle 20, which coincides very
nearly with the mean of cycles 8-20, seemed idealy suited to determination of
the distribution. This was do:e by sampling the Kp index once each day

over the interval of cycle 20. The resulting distribution is given in

Table 4 and plotted in Figure 4. Figure 4 also shows the distribution of

the increase in exospheric temperature that results from the derived Kp dis~
tribution. The temperature increase is the same in both models and is given

by

ATG = .28 Kp + 0203 exp (Kp)

The distribution of geomagnetic temperature increase was applied to the
global distributions for Kp = 0 in a manner similar to that used to apply the
diurnal variation. The relative frequency corresponding to a given tempera-
ture increase was determined by interpolation of the values given in Table 4.
The resulting global distributions are given for both models in Table 5 and
are plotted in Figure 5a for the J71 model and in Figure 5b for the US66

model. Mean values of the exospheric temperature from these distributions
are 881 K for the J71 model and 918 K for the US66 model.

CONCLUSION

The frequency distribution of exospheric temperature taken over all
locations on the earth and all conditions of solar and geomagnetic activity
was derived for both the J71 and US66 atmospheric models. Both distributions
have a fairly sharp maximum at a temperature just above 800 K. The skewness
of the distributions is reflected in somewhat higher values of the weighted
mean temperature. The mean temperature is approximately 880 K in the case
of the J71 model and 920 K in the case of the US66 model.

*

Subsequently, distributions were determined using all 8 3-hourly values of

the K index, both with and without the cycle 19 data. These were considerably
smoother near the maximum in the distribution but not significantly different
in any other way.
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